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Abstract

We propose a method for network intrusion detection based on language models
such as n-grams and words. Our method proceeds by extracting these models
from TCP connection payloads and applying unsupervised anomaly detection.
The essential part of our approach is linear-time computation of similarity mea-
sures between language models stored in trie data structures.

Results of our experiments conducted on two datasets of network traffic
demonstrate the importance of higher-order n-grams for detection of unknown
network attacks. Our method is also suitable for language models based on words,
which are more amenable in practical security applications. An implementation
of our system achieved detection accuracy of over 80% with no false positives on
instances of recent attacks in HTTP, FTP and SMTP traffic.

1 Introduction

Detection of unknown attacks is a long-standing issue on a wish-list of security
practitioners. While it is often claimed that current applications and infrastruc-
tures for tracking vulnerabilities and their exploits provide adequate protection
by means of attack signatures, there exist numerous examples of previously un-
known attacks, notably worms (e.g. 1) and zero-day exploits (e.g. 2), that have
defeated signature-based defenses. Furthermore, it often does not suffice for a
signature to be available – deployed signatures must be kept up-to-date by se-
curity administrators.

Discussion about unknown attacks has been carried out in various parts
of the intrusion detection community. For misuse detection, it centers around
the issues of making signatures more generic – and capable of at least not to
be fooled by mutations of known attacks (3; 4; 5; 6; 7; 8). There is, however, a
growing consensus that genuinely novel attacks can only be detected by anomaly
detection tools, at a cost of having to deal with false positives which may also
be valid anomalies.

A large amount of previous work has been done on anomaly detection in
network traffic (e.g. 9; 10; 11; 12; 13; 14). The main hurdle on the way to its
acceptance in practice is a high rate of false positives. Most of the previous



approaches do not deliver sufficient accuracy in an acceptable range of false-
positive rates. Hence further improvements of anomaly-based intrusion detection
techniques are highly desirable.

Apart from algorithmic differences, the main issue underlying anomaly detec-
tion approaches is the features they operate on. Some early approaches consider
only packet header information or statistical properties of sets of packets and
connections (13; 15). This information has proved to be useful for detection of
certain kinds of malicious activity such as probes and port scans, yet it usu-
ally does not suffice to detect attacks that exploit semantic vulnerabilities of
application-layer protocols and their implementations.

Recently, techniques of anomaly-based network intrusion detection have been
proposed that analyze packet and connection payloads (11; 16; 17; 18; 10; 9).
These techniques proceed by defining features over payloads and deriving models
of normality based on these features. Packets and connections that do not fit into
such models are considered anomalous and trigger alarms. All of these methods
make use of relatively simple features computed over payload bytes.

The main thesis of this contribution is that further improvement of detection
accuracy can be achieved by more advanced features defined over byte sequences.
The reason why byte sequences may be more successful in description of features
indicative of malicious content can be seen by comparing network protocols and
natural languages. The content of both is characterized by rich syntax and se-
mantics, and discrimination between different categories is only possible in terms
of syntactic and semantic constructs. For both network protocols and natural
languages, extensive effort has been made to describe important concepts in
terms of rules, only to find out that rules can hardly encompass the full general-
ity of underlying content. Protocols and natural languages possess grammatical
structure and yet recovery of this structure is stymied by uncertainty and am-
biguity. In view of the linguistic analogy, one can see that detection of misuse
and anomalous patterns amounts to learning syntactic and semantic fragments
of an underlying protocol language. Hence it is clearly promising to apply the
machinery of natural language processing to network intrusion detection.

Byte sequences can be represented by so-called n-grams, sequences of n con-
secutive symbols. Such representations have been previously used to model traces
of system calls (e.g. 19; 20; 21; 22; 23; 24), but surprisingly have not been ap-
plied in the context of network intrusion detection for n > 1. The main technical
difficulty that needs to be addressed for analysis of byte sequences is:

How can language models of packet and connection payloads, such as
n-grams, be efficiently extracted and compared?

Having efficient techniques for comparison of language models, one can apply
unsupervised anomaly detection algorithms to identify unusual events. Hence, we
focus our attention on methods for computing similarity measures between such
models. To address this problem we propose (a) a representation of n-grams
using tries and (b) a novel method for comparison of tries in linear time.



2 N-grams, Tries and Anomaly Detection

2.1 N-grams of TCP Connections

To motivate the subsequent presentation of our method, we begin with an exam-
ples that illustrates the utility of language models for discrimination of network
attacks and normal data. Fig. 1 shows the differences between 3-gram frequen-
cies of an IIS unicode attack and normal HTTP traffic. Due to the large space of
possible 3-grams the plot is limited to 3-grams present in the IIS unicode attack.
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Fig. 1. Frequency differences of 3-grams for an IIS unicode attack

Several positive peaks in the plot, which indicate a strong deviation from
normal traffic, correspond to typical 3-grams of the attack, e.g. “35c”, “/..”
and “%35”. These 3-grams manifest an essential pattern of the unicode attack
“%%35c” which is converted by a vulnerable IIS server to “%5c” (ASCII code
0x35 corresponds to “5”) and finally interpreted as backslash (ASCII code 0x5c).
The corresponding fragment of the attack is shown below.

GET /scripts/..%%35c../..%%35c../..%%35c../..%%35c../..%%35c../..%%35c..

/winnt/system/cmd.exe?/c+dir+c:

Although the presented example gives evidence that n-grams convey valuable
information for identification of attacks, one should abstain from attempting
to use n-gram frequencies in ad-hoc detection rules. Manifestation of attacks
in n-grams can significantly vary, therefore a more formal approach based on
measuring similarity between language models is advocated here.

2.2 Comparison of N-grams

In order to apply anomaly detection on language models, a set of similarity mea-
sures must be provided. A large variety of such measures, which differ in the way
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Fig. 2. Trie data structures (a) and their comparison (b).

they emphasize discriminative aspects of features, is available for vectorial data.
We now address the problem of extending such measures to language models.

The classical scheme for storing and comparing n-gram models utilizes a
hash table (e.g. 25). The n-grams extracted from a character stream and their
frequencies are stored in the bins of a hash table. Assuming the size of a hash
table is fixed at M , it takes on average Θ(M) to compare two hash tables con-
taining n-grams: one needs to loop over all M bins, checking for matching and
mismatching n-grams. To avoid possible hash collisions, a high value of M must
be chosen in advance, which is the main computational drawback of the hash
table approach.

A better alternative for storing and comparing n-grams is a trie data struc-
ture (26; 27). A trie is essentially an N -ary tree, whose nodes are N -place vectors
with components corresponding to the characters of an alphabet of size N (28).
Fig. 2(a) shows two tries X and Y containing the 4-grams {”barn”, ”card”}
and {”bank”, ”band”, ”card”}. Each node x of the trie is augmented to carry a
counter xc reflecting the occurrences of the inserted sequence. For example the
left trie in Fig. 2(a) holds 4 “barn”s and 3 “card”s.

Comparison of two tries can be carried out by enumerating matching and
mismatching n-grams. Starting at the root nodes, one traverses both tries in
parallel, processing matching and mismatching nodes. As an invariant, the nodes
under consideration in both tries remain at the same depth, and thus the worst-
case run time is O(nk) for k stored n-grams.

A similarity measure over two tries X and Y can now be expressed by defining
a traversal operator

⊕

and a match function m for matching and mismatching
nodes x and y:

d(X, Y ) =

TrieX,Y
⊕

x,y

m(x, y), where m(x, y) =

{

m+(x, y) if x = y

m−(x, y) otherwise



For example, for the Manhattan distance between two tries, the traversal oper-
ator is defined as

⊕

≡
∑

and the match function as

m(x, y) =

{

|xc − yc| if x = y

|xc| + |yc| otherwise

Figure 2(b) shows a snapshot of a traversal calculating the Manhattan dis-
tance. The match function at the nodes corresponding to the words {“barn”} and
{“band”, “bank”} is calculated as |4| + |8|, since a mismatch between n-grams
implies addition of their counts, according to the definition of the Manhattan
distance. By adapting the match function, one can calculate various similarity
measures. We have implemented and applied the Canberra distance (29) and ‘bi-
narized” Manhattan distance, which have been used in previous work on 1-grams,
the Czekanowski coefficient (30) and (second) Kulczynski coefficient (31), which
are common non-metric similarity measures particularly suitable for description
of sparse data. A brief description of these measures is given in Appendix A.1.

2.3 Unsupervised Anomaly Detection

Unsupervised anomaly detection is particularly suitable to the practical needs of
intrusion detection, as it spares an administrator from the task of collecting data
representative of normal activity. An unsupervised anomaly detection algorithm
can be directly applied to a stream of data and is supposed to effectively dis-
criminate between normal and anomalous patterns “on-the-fly”. Furthermore,
no extensive training using manually labeled data is required.

Because of its favorable properties, unsupervised anomaly detection has gained
significant interest in recent work on intrusion detection (e.g. 32; 14; 33). The
algorithms for unsupervised anomaly detection exploit differences in geometric
features of anomalies and normal data. The algorithms explore local proper-
ties of the provided data as in the case of single-linkage clustering (32) and our
k-nearest neighbor method Zeta, or analyze global properties as the simplified
Mahalanobis distance (10) and the quarter-sphere SVM (34). A brief summary
of these four algorithms used in our work is presented in Appendix A.2.

3 Experimental Results

In order to evaluate the proposed n-gram trie representation of network connec-
tions with respect to detection of unknown attacks and to gain insights into the
nature of recovered syntactic and semantic information, we conducted experi-
ments on two network traffic datasets. Specifically we are interested to clarify
the following open questions:

1. How does the length of n-grams affect detection performance with respect
to network protocols and attack types?

2. At what false-positive rate do we detect all instances of attacks present in
the data?



HTTP attacks FTP attacks SMTP attacks

HTTP tunnel .rhost upload Sendmail exploit
PHF CGI attack NcFTP exploit Mail: Spoofed frame

Password guessing Mail: PowerPoint macro
Mail: SSH trojan horse

Table 1. Remote-to-local attacks from DARPA 1999 dataset

We limit our experiments to the popular and text-based application-layer
protocols HTTP, FTP and SMTP, which constitute a steady target of network
attacks in the last decade.

3.1 Datasets

DARPA 1999 Dataset. This well-known dataset from an IDS evaluation
conducted by the DARPA in 1999 (35) has been used in numerous publica-
tions and can be considered a standard benchmark for evaluation of IDS. Even
though the DARPA 1999 dataset is known to suffer from several flaws and arti-
facts (12; 36; 37), especially the selection of attacks can be considered antiquated
in comparison to modern security threats, it remains the only major dataset on
which results can be reproduced.

As a preprocessing step, we randomly extracted 1000 TCP connections for
each protocol from the first and third weeks of the data corpus representing
normal data. We then selected all remote-to-local attacks present in the fourth
and fifth weeks of the dataset. Table 1 lists these remote-to-local attacks.

PESIM 2005 Dataset. In order to overcome the problems of the DARPA
1999 dataset, we generated a second evaluation dataset named PESIM 2005.
We deployed a combination of 5 servers using a virtual machine environment.
The systems ran two Windows, two Linux and one Solaris operating systems
and offered HTTP, FTP and SMTP services.

Normal network traffic for these systems was generated by members of our
laboratory. To achieve realistic traffic characteristics we transparently mirrored
news sites on the HTTP servers and offered file sharing facility on the FTP
servers. SMTP traffic was artificially injected containing 70% mails from per-
sonal communication and mailing lists, and 30% spam mails received by 5 indi-
viduals. The normal data was preprocessed similarly to the DARPA 1999 dataset
by random selection of 1000 TCP connections for each protocol from the data
corpus. Attachments were removed from the SMTP traffic.

Attacks against the simulated services were generated by a penetration test-
ing expert using modern penetration testing tools. Multiple instances of 27 dif-
ferent attacks were launched against the HTTP, FTP and SMTP services. The
attacks are listed in Table 2. The majority of these attacks is part of the compre-
hensive collection of recent exploits in the Metasploit framework (38). Additional



HTTP attacks FTP attacks SMTP attacks

HTTP tunnel 3COM 3C exploit CMAIL Server 2.3 exploit
IIS 4.0 htr exploit GlobalScape 3.x exploit dSMTP 3.1b exploit
IIS 5.0 printer exploit Nessus FTP scan MS Exchange 2000 exploit
IIS unicode attack ProFTPd 1.2.7. exploit MailCarrier 2.51 exploit
IIS 5.0 webdav exploit Serv-U FTP exploit Mail-Max SMTP exploit
IIS w3who exploit SlimFTPd 3.16 exploit Nessus SMTP scan
Nessus HTTP scan WarFTPd 1.65 pass exploit NetcPlus SmartServer3 exploit
PHP script attack WarFTPd 1.65 user exploit Personal Mail 3.072 exploit

WsFTPd 5.03 exploit Sendmail 8.11.6 exploit
WU-FTPd 2.6.1 exploit

Table 2. Remote-to-local attacks from PESIM 2005 data set

attacks were obtained from common security mailing lists and archives, such as
Bugtraq and Packetstorm Security. The “PHP script attack” was introduced by
the penetration testing expert and exploits insecure input processing in a PHP
script.

3.2 Experimental Setup

The basic building block of our experiments are the incoming byte sequences of
TCP connections. Each connection, normal or malicious, is transformed into a
trie representing a respective language model. Our dataset thus consists of a set
of tries computed over connection payloads.

Since our goal is the detection of unknown attacks, our algorithms are eval-
uated on randomly sampled mixtures of unseen normal and attack data. No
explicit learning involving labeled attacks is performed.

On the other hand, the algorithms at our disposal require certain parameters
to be set that affect their detection performance. Manual setting of such param-
eters usually results in tedious tuning of algorithms. Therefore, we precede the
evaluation of algorithms with a validation stage, at which the best parameters
are automatically selected based on an independent dataset. The crucial require-
ment in our setup is that no data used at the validation stage is employed during

evaluation.
The evaluation criterion is the so-called area under curve (AUC) which inte-

grates true-positive rates over a certain interval of false-positive rate, in our case
[0, 0.01]. For the sake of statistical significance, the results are averaged over 30
validation/evaluation runs, comprising 1000 connections each.

3.3 Results

Best Measure/Detector Configuration. As it was previously mentioned,
similarity measures induce various geometric properties which, in turn, are ex-
plored in different ways by anomaly detection methods. Hence, as a first step, we



Similarity measure Anomaly detector AUC

HTTP protocol

Kulczynski coefficient Quarter-sphere SVM 0.7807
Kulczynski coefficient Zeta 0.7696
Czekanowski coefficient Zeta 0.7580

FTP protocol

Kulczynski coefficient Zeta 0.7456
Kulczynski coefficient Single-linkage clustering 0.5795
Czekanowski coefficient Single-linkage clustering 0.5722

SMTP protocol

Czekanowski coefficient Single-linkage clustering 0.7561
Kulczynski coefficient Zeta 0.7318
Kulczynski coefficient Single-linkage clustering 0.7186

Table 3. Best three measure/detector configurations for each protocol

need to roughly establish what combinations of similarity measures and anomaly
detectors perform best on n-gram tries for each network protocol in question.
This can be done by averaging the AUC values for each measure/detector con-
figuration over all values of n.

Table 3 lists the best three measure/detector configurations for the HTTP,
FTP and SMTP protocols on both datasets. For all protocols similarity coeffi-
cients yield better accuracy than metric distances, which points to the sparse
characteristics induced by high-order n-grams. For the HTTP protocol a global
anomaly detector achieves the best performance, while for the other protocols
local anomaly detectors perform best for varying length of n. In the remaining
experiments we fix the measure/detector configuration to the best one for each
network protocol.

Varying N-gram Length. Previous results in natural language processing and
host-based IDS indicate that the optimal n-gram length may vary for different
applications (39; 19; 24). We now investigate if the same observation holds for
n-gram models of TCP connection payloads.

We follow the same setup as in the selection of the optimal measure/detector
configuration, except that results of individual values of n are reported using
a fixed configuration. The results are shown in Fig. 3 for the DARPA 1999
dataset and Fig. 4 for the PESIM 2005 dataset, which display the ROC graphs
for selected values of n.

The detection performance varies significantly among the values of n for
different protocols. In fact, it turns out that each of the three values considered
in this experiment is optimal for some protocol. Apart from that, the overall
accuracy of our approach is very encouraging, especially on the more recent
PESIM 2005 dataset. For the best value of n, a detection rate above 80% was
observed with no false-positives for the HTTP, FTP and SMTP protocols.
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Fig. 3. ROC graphs for 1-, 3- and 5-grams (DARPA 1999)

Analysis of Specific Attacks. One is always interested to know how well an
IDS detects specific attacks in a dataset. As criterion for this experiment we
considered the minimum false-positive rate at which all instances of an attack
are detected. In addition, we record the optimal value of n for different attacks.
The results are shown in Table 4.

One can clearly see that 18 from 27 attack types (66%) are perfectly rec-
ognized with no false positives. This demonstrates not only the high accuracy
of n-gram-based anomaly detection but also its wide coverage within the attack
spectrum.

Some interesting insights can be gained from the analysis of the optimal n for
specific attacks. For several attacks, which are particularly easy to detect, the
n-gram length is irrelevant. Noteworthy is the consistent optimality of n = 3 for
several SMTP attacks which are also perfectly detected. For the attacks that are
more difficult to detect, longer n-grams lengths seem to be prevalent. An extreme
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Fig. 4. ROC graphs for 1-, 3- and 5-grams (PESIM 2005)



Attack name # Instances n False-positive rate

HTTP protocol

HTTP tunnel 6 7 0.0231
IIS 4.0 htr exploit 3 1–7 0.0000
IIS 5.0 printer exploit 5 1–7 0.0000
IIS unicode attack 4 1 0.0987
IIS 5.0 webdav exploit 6 1 0.0322
IIS w3who exploit 3 2–7 0.0000
Nessus HTTP scan 6 7 0.0252
PHP script attack 5 2 0.0091

FTP protocol

3COM 3C exploit 4 2–5 0.0000
GlobalScape 3.x exploit 4 1–2 0.0000
Nessus FTP scan 5 1–3 0.0000
ProFTPD 1.2.7 exploit 4 7 0.3448
Serv-U FTP exploit 4 2–3 0.0000
SlimFTPd exploit 4 2–5 0.0000
WarFTPd pass exploit 3 1–6 0.0000
WarFTPd user exploit 2 1–6 0.0000
WsFTPd exploit 4 2–5 0.0000
WU-FTPd exploit 4 6 0.0133

SMTP protocol

CMAIL Server 2.3 exploit 4 3 0.0000
dSMTP 3.1b exploit 3 2 0.0003
MS Exchange 2000 exploit 2 3 0.0000
MailCarrier 2.51 exploit 4 3 0.0000
Mail-Max SMTP exploit 2 3 0.0000
Nessus SMTP scan 6 3-4 0.0000
NetcPlus SmartServer3 exploit 3 3 0.0000
Personal Mail 3.072 exploit 3 3 0.0000
Sendmail 8.11.6 exploit 4 3 0.0012

Table 4. False-positive rates for detection of individual attacks (PESIM 2005)

example is the ProFTPd exploit. This exploit uploads a malicious file to an FTP
server. Since the file content is transfered over a data channel not monitored by

our system, this attack can only be detected by chance in our setup.

4 From N-grams to Words

The message from the experiments in the previous section may be somewhat
confusing for a practitioner. One can see that longer n-grams bring improvement
in detection performance in some cases, on the other hand, no consistency can
be found across various attacks and protocols. How should one choose the right
n beforehand if attacks are unknown?



The following extension of the n-gram model addresses this concern. Note
that the semantics of natural languages is, in fact, defined in terms of words
rather than n-grams. Words in a natural language are defined as consecutive
character sequences separated by white-space symbols. Similarly, semantics of
text-based protocols such as HTTP, FTP and SMTP can be captured by ap-
propriately defined words and boundary symbols (16; 18). For our experiments
we define the following global set of separator bytes that is used to tokenize
payloads of HTTP, FTP and SMTP connections:

{ CR, LF, TAB, “ ”, “,”, “.”, “:” , “/” , “&” }.

We are now about to discover another remarkable property of the trie repre-
sentation of n-grams and the comparison method proposed in this paper: it can
handle variable-length “grams” without any alteration!

We repeat the experiments under the same setup as the experiments on vary-
ing n-gram length using a stream of words instead of n-grams. The similarity
measures applied in previous experiments are then computed over word frequen-
cies, and the same optimal measure/detector configuration is used.

To emphasize the practical focus of this experiment, we compare the results
of our models with the performance of the open-source signature-based IDS
Snort (40) (Snort version 2.4.2, released on 28.09.2005 and configured with the
default set of rules). The results are shown in Fig. 5 for the DARPA 1999 dataset
and Fig. 6 for the PESIM 2005 dataset.

It can be seen that our word-based detector eventually yields the same accu-
racy as the best n-gram-based detector (at false-positive rates of about 0.5%).
However, the initial ascent of the ROC curve is not as steep as for the best n-
gram. This is the price one has to pay for being independent of the parameter n.

To our surprise, the n-gram and word models significantly outperformed
Snort on the DARPA 1999 and PESIM 2005 dataset even though all included
attacks except for the “PHP script” were known months before the release date
of our Snort distribution. This result confirms a misgiving that signature-based
IDS may fail to discover “fresh” attacks despite a major effort in the security
community to maintain up-to-date signature repositories. Noteworthy is the fact
that Snort failed in our experiments due to two reasons. Some attacks were not
detected because no appropriate signature was present, which is manifested by
flat ROC graphs that never reach the 100% level. Other failures occurred due
to minor variations in attack syntax. For example, one of the SMTP attacks
was not discovered when an attacker replaced the initial “HELO” command
with “EHLO”, which is allowed by protocol specification and frequently used in
practice.
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Fig. 5. ROC graphs for best n-grams and words (DARPA 1999)

5 Related Work and Discussion

Although advanced language models and tries have not been previously used
in the context of network intrusion detection, they are well known in several
other fields of computer science. Quite naturally, language models have been
first developed by researchers in the fields of information retrieval and natural
language processing – several decades before their relevance for intrusion detec-
tion was discovered. As early as mid-sixties, character n-grams were used for
error correction in optical character recognition (41). Application of n-grams
to text categorization was pioneered by Suen (42) and was followed by a large
body of subsequent research (e.g. 25; 43; 44). Various similarity measures were
used to compare n-gram frequencies, e.g. the inner product between frequency
vectors (25) or Manhattan and Canberra distances (43). Recent approaches to
text categorization advocate the use of kernel functions as similarity measures,
which allows one to incorporate contextual information (45; 46; 39).
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Fig. 6. ROC graphs for best n-grams and words (PESIM 2005)



Re-discovery of n-gram models in the realm of host-based IDS began in the
mid-nineties with the seemingly ad-hoc “sliding window” approach of Forrest
et al. (19). Their main idea was to create a database of all possible n-grams in
system call traces resulting from normal operation of a program. System call
traces with a large degree of binary mismatch to the database were flagged as
anomalous. In the ensuing work these ideas were extended through application of
Hidden Markov Models (21), feed-forward and recursive neural networks (23),
rule induction algorithms (47) and Support Vector Machines (14). As part of
this evolution, trie and suffix tree data structure were introduced for storage
and analysis of system call n-grams (24; 22; 48).

Application of n-gram models for network-based IDS originated in the idea of
using byte histograms of packet payloads for statistical tests of anomality (11).
A more advanced model was proposed by Wang and Stolfo, in which a simplified
Mahalanobis distance is used over byte histograms to detect anomalous packet
payloads (10; 9). To cope with varying packet length the byte histograms are
conditioned on packet lengths and additional merging of adjacent models is used
to control the size of the overall model.

The byte histograms of packet payloads by Wang and Stolfo can be seen as
a particular case of an 1-gram model, whose similarity is measured using the
simplified Mahalanobis distance. Compared to this approach, we incorporate
advanced language models, such as high-order n-grams and words, and propose
an algorithm for linear-time computation of a wide range of similarity measures
for such models using trie data structures.

Results of experiments conducted on the DARPA 1999 and PESIM 2005
datasets demonstrate the importance of higher-order n-grams for detection of
recent network attacks. It is nonetheless difficult to determine an optimal length
of n-gram models for particular attacks and protocols. This problem can be
alleviated by considering language models based on words, using separators ap-
propriate for protocol syntax. The accuracy of unsupervised anomaly detectors
based on word models, as investigated in our experiments, is comparable to the
accuracy of the best n-gram models. Furthermore, the system based on our lan-
guage model significantly outperformed a recent version of the open-source IDS
Snort equipped with the full standard set of signatures in a “plug-and-play”
setup.
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[34] Laskov, P., Schäfer, C., Kotenko, I.: Intrusion detection in unlabeled data
with quarter-sphere support vector machines. In: Proc. DIMVA. (2004)
71–82



[35] Lippmann, R., Haines, J., Fried, D., Korba, J., Das, K.: The 1999 DARPA
off-line intrusion detection evaluation. Computer Networks 34(4) (2000)
579–595

[36] McHugh, J.: The 1998 Lincoln Laboratory IDS evaluation. In: Proc. RAID.
(2000) 145–161

[37] McHugh, J.: Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed by
Lincoln Laboratory. ACM Trans. on Information Systems Security 3(4)
(2000) 262–294

[38] Moore, H.D.: The metasploit project – open-source platform for developing,
testing, and using exploit code. http://www.metasploit.com (2005)

[39] Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text
classification using string kernels. Journal of Machine Learning Research 2
(2002) 419–444

[40] Roesch, M.: Snort: Lightweight intrusion detection for networks. In: Proc.
LISA. (1999) 229–238

[41] Nagy, G.: Twenty years of document image analysis in PAMI. IEEE Trans.
Pattern Analysis and Machine Intelligence 22(1) (2000) 36–62

[42] Suen, C.Y.: N-gram statistics for natural language understanding and text
processing. IEEE Trans. Pattern Analysis and Machine Intelligence 1(2)
(1979) 164–172

[43] Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Proc.
SDAIR, Las Vegas, NV, USA. (1994) 161–175

[44] Robertson, A.M., Willett, P.: Applications of n-grams in textual information
systems. Journal of Documentation 58(1) (1998) 48–69

[45] Watkins, C.: Dynamic alignment kernels. In Smola, A., Bartlett, P.,
Schölkopf, B., Schuurmans, D., eds.: Advances in Large Margin Classifiers,
Cambridge, MA, MIT Press (2000) 39–50

[46] Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: A string kernel for
SVM protein classification. In: Proc. Pacific Symp. Biocomputing. (2002)
564–575

[47] Lee, W., Stolfo, S., Chan, P.: Learning patterns from unix process execution
traces for intrusion detection. In: Proc. AAAI workshop on Fraud Detection
and Risk Management, Providence, RI, USA (1997) 50–56

[48] Michael, C.: Finding the vocabulary of program behavior data for anomaly
detection. In: Proc. DISCEX. (2003) 152–163

[49] Hamming, R.W.: Error-detecting and error-correcting codes. Bell System
Technical Journal 29(2) (1950) 147–160

[50] Anderberg, M.: Cluster Analysis for Applications. Academic Press, Inc.,
New York, NY, USA (1973)

[51] Harmeling, S., Dornhege, G., Tax, D., Meinecke, F., Müller, K.R.: From
outliers to prototypes: ordering data. Neurocomputing (2006) in press.



A Appendix

A.1 Similarity Measures

A (dis)similarity measure is a binary function that maps x and y with component
values xi and yi to a singular (dis)similarity score.

Metric Distances. The Canberra distance dc is a normalized form of the Man-
hattan distance. It expresses metric characteristics and distance scores lie within
the range [0, 1]. The distance is suitable for histograms containing quantities and
frequencies:

dc(x, y) =
n

∑

i=1

|xi − yi|

xi + yi

The “binarized” Manhattan distance db is similar to the Hamming dis-
tance (49). It is metric and maps the input vectors x and y to a binary space
using the function b which returns 1 for non-zero values:

db(x, y) =

n
∑

i=1

|b(xi) − b(yi)|

Similarity Coefficients. Similarity coefficients are often applied to binary data
and express non-metric properties (50). These coefficients are constructed over
four summation variables a, b, c and d. The variable a defines the number of
positive matching components (1-1), b the number of left mismatches (0-1), c

the number of right mismatches (1-0) and d the number of negative matches
(0-0).

The coefficients can be extended to non-binary data by modification of these
summation variables. The degree of matching between two components can be
defined as min(xi, yi) and accordingly mismatches as differences from min(xi, yi):

a =

n
∑

i=1

min(xi, yi), b =

n
∑

i=1

(xi − min(xi, yi)) , c =

n
∑

i=1

(yi − min(xi, yi))

The Czekanowski coefficient sc measures the ratio between positive matching
components and the sum of all components (30). In the extended form it can be
expressed as following:

sc(x, y) =
2a

2a + b + c
=

2
∑n

i=1
min(xi, yi)

∑n

i=1
xi + yi

The second Kulczynski coefficient sk measures the ratio between positive
matching components against the left- and right-hand side of mismatches (31).
In the extended form the second Kulczynski coefficient is defined as following:



sk(x, y) =
1

2

(

a

a + b
+

a

a + c

)

=
1

2

(∑n

i=1
min(xi, yi)

∑n

i=1
xi

+

∑n

i=1
min(xi, yi)

∑n

i=1
yi

)

A.2 Anomaly Detectors

Global Anomaly Detectors. The simplified Mahalanobis distance (10) de-
termines the center of mass of data µ and the variance of each dimension σi in
input space. The anomaly score is defined as the variance-scaled distance from
x to µ:

mµ,σ(x) =

n
∑

i=1

|xi − µi|

σi

The quarter-sphere SVM (34) is a kernel-based learning method that deter-
mines the center of mass of input data µφ in a high-dimensional feature space
using a non-linear mapping function φ. The anomaly score is defined as the
distance from φ(x) to µφ in feature space:

qφ,µ(x) = ||φ(x) − µφ||

Local Anomaly Detectors. Simplified single-linkage clustering (32) is a com-
mon clustering algorithm. Given a cluster assignment, the anomaly score is de-
fined anti-proportional to the size of the cluster x is assigned to:

sc(x) =
1

|c|
for x ∈ c

Our new method Zeta is an anomaly score based on the concept of k-nearest
neighbors and extends the outlier detection methods proposed in (51). The score
is calculated as the mean distance of x to its k-nearest neighbors normalized by
the mean inner-clique distance:

ζk(x) =
1

k

k
∑

i=1

d(x, nni(x)) −
1

k(k − 1)

k
∑

i=1

k
∑

j=1

d(nni(x), nnj(x))


